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Quadratically convergent multiconfiguration Dirac-Fock and multireference relativistic
configuration-interaction calculations for many-electron systems
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A quadratically convergent Newton-Raphson algorithm for a relativistic multiconfiguration Dirac-Fock self-
consistent-field calculations is developed and implemented with analytic basis sets of Gaussian spinors. A
procedure to perform second-order energy optimization for a general class of multiconfiguration wave func-
tions constructed from one-particle Dirac spinors is described. We report the results of relativistic multicon-
figuration Dirac-Fock self-consistent-field calculations and relativistic multireference configuration-interaction
calculations based on the multiconfiguration Dirac-Fock wave functions for the lowest3P0 , 3P1 , and 3P2

states of oxygenlike iron (Fe181), groundJ50 and excitedJ51 states of beryllium, and ground-state beryl-
liumlike neon (Ne61), species that exhibit the near degeneracy characteristic of a manifold of strongly inter-
acting configurations.@S1063-651X~98!11309-0#

PACS number~s!: 02.70.2c, 31.15.2p, 31.25.Eb, 31.25.Jf
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I. INTRODUCTION

The importance of electron correlation in the accurate
scription of light elements and molecules that contain lig
elements is well established. In heavy-atom systems
highly ionized high-Z ions, the effects of relativity becom
important in addition to electron correlation. Further, the
fects of relativity and electron correlation in these syste
are strongly intertwined. Thus, an intense effort in the l
decade has been directed toward developing relativ
many-body theories to accurately account for both relativ
tic and electron correlation effects in heavy-atom syste
and highly ionized high-Z ions. Among the relativistic
many-body techniques developed recently are numer
finite-difference and matrix multiconfiguration~MC! Dirac-
Fock self-consistent field~DF SCF! theory@1–3#, relativistic
many-body perturbation theory@4–9#, relativistic coupled
cluster theory@10–13#, and relativistic configuration interac
tion ~CI! @14–17#. Discrete basis sets of both ‘‘local’
@4,5,10,12,15# and ‘‘global’’ functions @3,6–8,11,14,16# as
well as numerical finite-difference algorithms@1,2,9,13,17#
have been used. Implementations based on expansion in
lytic basis functions@3–8,10–12,14–16# have an advantag
over those based on numerical finite-difference algorith
@1,2,9,17# in providing a compact representation of the co
plete Dirac spectrum.

We recently@18# employed the generalized coupling o
erator method@19# to construct a single Fock operator fo
open-shell DF SCF theory, and showed that with such
operator all closed- and open-shell four-component Di
spinors can be determined. We reported a state-specific
tivistic many-body perturbation theory for open-shell sy
tems in which our single Fock operator method is employ
to obtain a Møller-Plesset-type separation of the relativi
many-electron Hamiltonian@8#. Calculations which have em
ployed ‘‘global’’ basis sets ofG spinors (G for ‘‘Gaussian’’
after Grant@20#! have been done on a number of man
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electron systems@8#. State-specific many-body perturbatio
theory involves a full implementation of generalize
Møller-Plesset perturbation theory applied to general op
shell reference wave functions, and, in low order, yields
large fraction of the dynamic correlation@21#. The spinors
used in these relativistic many-body perturbation theory c
culations were obtained in single-configuration DF SCF c
culations, and most contemporary implementations rely o
single-configuration reference.

Single-reference many-body perturbation theory is eff
tive in describing dynamic correlation, but fails to accou
for nondynamic correlation~i.e., near-degeneracy effects!.
Dynamic correlation is a short-range effect that arises fr
electron-electron interaction and is the major correction
the Dirac-Fock independent particle model, while nond
namic correlation is a consequence of the existence of ne
degenerate excited states that interact strongly with the
erence state@21,22#. Nondynamic correlation is accounte
for by including in the reference state sufficient configurati
state functions~CSF’s! to describe all near degeneracie
Systems in which only dynamic correlation is important a
well represented by single-configuration Dirac-Fock wa
functions, whereas systems in which nondynamic correla
is important cannot be correctly described by sing
configuration Dirac-Fock wave functions. Near degenera
of the valence spinors gives rise to a manifold of stron
interacting configurations, i.e., strong configuration mixi
within a relativistic complex due to asymptotic degenera
@22#, and makes a relativistic multiconfiguration treatme
mandatory. The classic examples are the near-degenerac
fects in the beryllium and carbon isoelectronic sequenc
and in general all open-shell atoms with two or more valen
electrons. For most reactive and excited-state energy surf
of molecules, single-configuration self-consistent field the
also fails to properly describe the separated fragments
cause of the near degeneracy involved in those proces
While slow convergence in iterative first-order MC DF SC
procedures has been a significant barrier, it can be practic
solved in many cases by employing the quadratically conv
5096 © 1998 The American Physical Society
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gent Newton-Raphson technique@23#. Once near-degenerac
effects are accounted for by relativistic MC DF SCF theo
the remaining dynamic correlation may be treated by mu
reference generalized Møller-Plesset perturbation theory@21#
or relativistic multireference CI based on the MC DF SC
reference wave function@17#.

In the present study, we extend our single-configurat
open-shell DF SCF@18# to a general MC DF SCF in order t
treat the systems with significant nondynamic correlation
fects. Numerical finite-difference and matrix MC DF SC
algorithms based on a first-order energy variation define o
a stationary point on the energy surface, and thus their it
tive solutions often exhibit slow convergence for the grou
states of atoms and molecules, and are often nonconver
for excited states. To optimize even relatively simple M
wave functions with respect to spinor variations, it is nec
sary to know the curvature of the energy surface with resp
to variations in spinors and CI coefficients. This requir
knowing the second derivatives. Second-order optimiza
of Dirac four-spinors and CI mixing coefficients in MC D
SCF theory is thus mandatory in order to guarantee w
controlled convergence in relatively few iterations. The
sential feature of MC DF SCF theory is the multireferen
approach to treating nondynamic correlation.

Here we report a successful implementation by expans
in G spinor basis sets of the second-order MC DF SCF
multireference configuration interaction with single a
double excitations~CI-SD! formalisms. We develop the MC
variational energy up to second order in the unitary rotat
parameters, and seek an energy extremum by employi
quadratic approximation on the energy surface. The
proach parallels the second-order algorithms develope
nonrelativistic multiconfiguration Hartree-Fock calculatio
@23#, and provides excellent convergence once a quadr
basin on the energy surface is entered. In Sec. II, the q
dratically convergent relativistic MC DF SCF and multire
erence CI-SD algorithms are formulated. In Sec. III, the
sults of matrix MC DF SCF and multireference CI-S
calculations on the the lowest3P0 , 3P1 , and 3P2 states of
oxygenlike iron (Fe181), ground J50 and excitedJ51
states of beryllium, and the groundJ50 state of beryllium-
like neon (Ne61) are presented.

II. THEORY

The effectiveN-electron Hamiltonian~in atomic units! for
the development of our matrix MC DF SCF algorithm
taken to be the relativistic ‘‘no-pair’’ Dirac-Coulomb~DC!
Hamiltonian@24,25#,

HDC
1 5(

i
hD~ i !1L1S (

i . j

1

r i j
DL1 , ~1!

wherehD( i ) is the Dirac one-electron Hamiltonian,

hD~ i !5ca ipi1~b21!c21Vnuc~r i !. ~2!

Herea andb are the 434 Dirac vector and scalar matrice
respectively.Vnuc(r ) is the nuclear attraction term. Th
nucleus is modeled as a sphere of uniform proton-cha
distribution (Z is the nuclear charge, andR the radius of the
sphere!,
,
i-
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Vnuc~r !55 2
Z

r
for r .R

2
Z

2RS 32
r 2

R2D for r<R.

~3!

The total projection operator L1

5L1(1)L1(2)•••L1(n), whereL1( i ) is the projection op-
erator onto the space spanned by the positive- eigenfunct
of the MC DF SCF equation@18,25# for the individual elec-
trons. The operatorL1 formally takes into account the field
theoretic condition that the negative-energy states are fi
@24,25#. The eigenfunctions of the matrix DF SCF equatio
clearly separate into two discrete manifolds of positive- a
negative-energy states. As a result, the positive-energy
jection operators can be accommodated easily in many-b
calculations. The formal conditions on the projection are
tomatically satisfied when only the positive-energy spin
are employed.

Adding the frequency-independent Breit interaction,

B1252 1
2 @a1a21~a1•r12!~a2•r12!/r 12

2 #/r 12 ~4!

to the instantaneous electron-electron Coulomb interact
in Coulomb gauge, results in the Coulomb-Breit potent
which is correct to ordera2 (a being the fine-structure con
stant! @24#. Addition of the Breit term yields the no-pai
Dirac-Coulomb-Breit~DCB! Hamiltonian@24,25#

HDCB
1 5(

i
hD~ i !1L1S (

i . j
S 1

r i j
1Bi j D DL1 , ~5!

which is covariant to first order and increases the accurac
calculated fine-structure splittings and inner-shell bind
energies. Higher-order QED effects appear first in ordera3.
Studies have appeared that go beyond the no-pair app
mation where negative-energy states are needed to eva
the higher-order QED effects@26,27#.

Eigenfunctions of the no-pair DC Hamiltonian are a
proximated by a linear combination ofN-electron CSF’s.

CMCDFC~gJp!5 (
I

NCSF

CI
gJpF I~g IJp!. ~6!

Here the MC Dirac-Fock-Coulomb self-consistent-fie
~DFC SCF! wave functionCMCDFC(gJp) is an eigenfunc-
tion of the angular momentum and parity operators with to
angular momentumJ and parity p, and F I(g IJp) the
CSF’s.g denotes a set of quantum numbers other thanJ and
p necessary to specify the state uniquely. In the followin
CI

gJp is abbreviated asCI
g .

The total DC energy of the general electronic sta
CMCDFC(gJp) can be expressed as

EgJp5^CMCDFC~gJp!uHDC
1 uCMCDFC~gJp!&

5 (
I>J

NCSF

CI
gCJ

g^F I~g IJp!uHDC
1 uFJ~gJJp!&~22d IJ!.

~7!
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Here it is assumed thatCMCDFC(gJp) and FJ(gJJp) are
normalized, and the hermiticity of the Hamiltonian has be
employed to reduce the number of terms in the summat
The total energy can be conveniently expressed in term
the unique elements of the one- and two-particle radial in
grals,

EgJp5 (
a51

Nt

taI ~aaba!1 (
b51

NV

VbRnb~abbb ,cbdb!, ~8!

where Nt and NV are the numbers of nonzerota and Vb
coefficients. The short notation for the radial integrals h
been used:

I ~ab!5I ~nakanbkb!5~fnaka
~r !uhD~r !ufnbkb

~r !&, ~9!

Rn~ab,cd!5Rn~nakanbkb ,nckcndkd!

5K fnaka
~r 1!fnbkb

~r 2!U r ,
n

r .
n11U

3fnckc
~r 1!fndkd

~r 2!L , ~10!

where$fnaka
(r )% is an orthonormal set of Dirac one-electro

radial spinors of symmetryk. The symmetryk is related to
spinor angular momentumj by k57( j 1 1

2 ) for l 5 j 7 1
2 ,

wherel is orbital angular momentum quantum number of t
large component spinor. The generalized coefficientsta and
Vb are expressed in terms of nonzero angular coefficientsta

IJ

andVb
IJ :

ta5 (
a851

Nt8

ta8
IJ d~a,a8!$22d IJ%,CI

gCJ
g, ~11!

Vb5 (
b851

NV8

Vb8
IJ d~b,b8!$22d IJ%CI

gCJ
g . ~12!

The angular coefficientsta
IJ andVb

IJ account for the symme
tries of the radial integralsI (aaba) and Rn(abbb ,cbdb),
and the notationsa5$aaba% andb5$nb ,abbb,cbdb% have
been used.

Throughout the section, the following notations are us
The indicese and f denote occupied spinors; the indicesp,
q, r , and s denote any of the occupied or virtual spino
~both positive and negative energy spinors!; the indicesI , J,
n
n.
of
-

s

:

and K denote CI coefficients; and the indicesa, b, c, d,
and n are reserved for the setsa and b describing unique
radial integrals.

A. Second-order MC DFC SCF energy optimization
by spinor rotations

Given a trial orthonormal set of one-electron rad
spinors $fnpkp

(r )%, the optimum occupied radial spinor

$fneke

opt % can be found by a unitary transformationU511T
via

fneke

opt ~r !5
1

r S Pneke

opt ~r !

Qneke

opt ~r !D 5(
p

2Nk

fnpkp
~r !Upe

5(
p

2Nk

fnpkp
~r !~Tpe1dpe!. ~13!

Here, the summation extends over both negative and pos
energy spinors.Pnk(r ) and Qnk(r ) are the large (L) and
small (S) radial components and are expanded in Nk

Gaussian-type functions,$xk i
L % and $xk i

S %, that satisfy the
boundary conditions associated with the finite nucle
@7,18,28#:

Pnk~r !5(
i

xk i
L jnk i

L , ~14!

Qnk~r !5(
i

xk i
S jnk i

S . ~15!

Here$jnk i
L % and$jnk i

S % are linear variation parameters.
In terms of the powers of the spinor variation paramet

T5$Tpe%, the energyEgJp in Eq. ~8! can be expanded in th
following way:

EgJp5E~0!1DE~1!~T!1DE~2!~T!1••• . ~16!

HereDE( i )(T)5E( i )(T)2E( i 21)(T) is the i th-order energy
correction proportional to the term (T) i . The energyEgJp is
a fourth-order function of rotation matrix elementsTpe . In-
serting the optimum spinor expression~13! into Eq. ~8! and
collecting the terms of the same power ofT, the energy
expression to second-orderE(2)(T) in Tpe is obtained,

E~2!~T!5E~0!1DE~1!~T!1DE~2!~T!, ~17!

whereE(0) is given in Eq.~8!,
DE~1!~T!5 (
e51

Nw

(
p51

2Nk

TpeF (
a51

Nt

ta$I ~pba!d~e,aa!1I ~aap!d~e,ba!%1 (
b51

NV

Vb$Rnb~pbb ,cbdb!d~e,ab!

1Rnb~abp,cbdb!d~e,bb!1Rnb~abbb ,pdb!d~e,cb!1Rnb~abbb ,cbp!d~e,db!%G ~18!

and
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DE~2!~T!5 (
e51

Nw

(
f 51

Nw

(
p51

2Nk

(
q51

2Nk

TpeTq fF (
a51

Nt

taI ~pq!d~e,aa!d~ f ,ba!1 (
b51

NV

Vb$Rnb~pq,cbdb!d~e,ab!d~ f ,bb!

1Rnb~pbb ,qdb!d~e,ab!d~ f ,cb!1Rnb~pbb ,cbq!d~e,ab!d~ f ,db!1Rnb~abp,qdb!d~e,bb!d~ f ,cb!

1Rnb~abp,cbq!d~e,bb!d~ f ,db!1Rnb~abbb ,pq!d~e,cb!d~ f ,db!%G . ~19!

Here the indexNw represents the number of occupied electronic shells.
Variation of the approximate energyE(2)(T) with respect to parametersTpe leads to the Newton-Raphson equations,

]E~2!~T!

]Tpe
5gpe

o 1(
q f

hpe,q f
oo Tq f50, ~20!

where the gradient with respect toTpe is

gpe
o 5

]DE~1!~T!

]Tpe
5 (

a51

Nt

ta@ I ~pba!d~e,aa!1I ~aap!d~e,ba!#1 (
b51

NV

Vb$Rnb~pbb ,cbdb!d~e,ab!

1Rnb~abp,cbdb!d~e,bb!1Rnb~abbb ,pdb!d~e,cb!1Rnb~abbb ,cbp!d~e,db!%, ~21!

and the Hessian matrix with respect toTpe is

hpe,q f
oo 5

]2DE~2!~T!

]Tpe]Tq f
5 (

a51

Nt

ta@ I ~pq!d~e,aa!d~ f ,ba!1I ~qp!d~e,ba!d~ f ,aa!#1 (
b51

NV

Vb$Rnb~pq,cbdb!d~e,ab!d~ f ,bb!

1Rnb~pbb ,qdb!d~e,ab!d~ f ,cb!1Rnb~pbb ,cbq!d~e,ab!d~ f ,db!1Rnb~abp,qdb!d~e,bb!d~ f ,cb!

1Rnb~abp,cbq!d~e,bb!d~ f ,db!1Rnb~abbb ,pq!d~e,cb!d~ f ,db!1Rnb~qp,cbdb!d~ f ,ab!d~e,bb!

1Rnb~qbb ,pdb!d~ f ,ab!d~e,cb!1Rnb~qbb ,cbp!d~ f ,ab!d~e,db!1Rnb~abq,pdb!d~ f ,bb!d~e,cb!

1Rnb~abq,cbp!d~ f ,bb!d~e,db!1Rnb~abbb ,qp!d~ f ,cb!d~e,db!%. ~22!
in
rg

e
a-

to

the
s—
To account for the orthogonality constraints, terms
volving Lagrange multipliers must be added to the ene
functional:

W5E~2!~T!1(
e f

Nw

ve f~de f2Se f! , ~23!

where Se f5^ fneke
(r )ufnfk f

(r )& is the overlap between

spinorse and f . $ve f% are the Lagrange multipliers and th
diagonal elementsvee are related to the fractional occup
tions qee and orbital energiesee by vee5qeeee . Since an
orthonormal trial set of radial spinors was assumed,

Se f5Se f
LL1Se f

SS5de f .

Finally, the variation of the total energy functional leads
the equation

]W

]Tpe
5g̃pe

o 1(
q f

h̃pe,q f
oo Tq f50, ~24!

where the new gradient is

g̃pe
o 5gpe

o 22(
f

ve fSf p5gpe
o 22vep, ~25!
-
y
and the new Hessian is

h̃pe,q f5hpe,q f22ve fSpq5hpe,q f22ve fdpq . ~26!

B. Simultaneous optimization of the spinor rotations
and CI coefficients

The CI coefficientsCI
g @Eq. ~7!# are not constant, and

variations over them must also be incorporated in
second-order energy. Consider two sets of CI coefficient
Cg 5 $CI

g% ~optimum! andC(0)g 5 $CI
(0)g%~approximate!. A

Taylor expansion of the energy yields

EgJp~T,Cg5C~0!g1DCg!

5EgJp~T,C~0!g!1(
I

]EgJp~T,Cg!

]CI
g U

C~0!g

DCI
g

1
1

2(IJ
]2EgJp~T,Cg!

]CI
g]CJ

g U
C~0!g

DCI
gDCJ

g1••• .

~27!

DCI
g may be expanded in terms of the CI vectors$CI

(0)g8%:
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DCI
g5CI

g2CI
~0!g5 (

g851

NCSF

Ag8CI
~0!g82CI

~0!g

5 (
g851

NCSF

~Ag82dg8g!CI
~0!g8

5 (
g851

NCSF

Bg8CI
~0!g8 . ~28!

Now the second-order energy can be expressed in term
DCI

g or Bg8 . Inserting the expression forEgJp @Eq. ~16!#
into Eq.~27! and collecting terms with up to second order
DCg andT, we obtain:

E~2!~T,DCg!5E~2!~T!1(
I

]E~1!~T!

]CI
g U

C~0!g

DCI
g

1
1

2(IJ
]2E~0!

]CI
g]CJ

gU
C~0!g

DCI
gDCJ

g , ~29!

where the abbreviated notationE( i )(T,C(0)g)5E( i )(T) is
used. After collecting terms in Eq.~29! order by order in
both DCg andT , we obtain

E~2!~T,DCg!5E~0!1DE~1!~T,DCg!1DE~2!~T,DCg!,
~30!

whereDE(1)(T,DCg) is given by

DE~1!~T,DCg!5DEc~1!1DEo~1! .

DEo(1) is defined in equation~18!, and upper indicesc ando
represent the CI and orbital variations, respectively:
of

DEc~1!52(
IJ

CJ
~0!gHIJDCI

g52(
IJ

(
g8

CJ
~0!g

HIJCI
~0!g8Bg8

52(
g8

E~0!g8Bg8dg8g52E~0!gBg . ~31!

Second-order energy correction is more complex an
includes mixed terms:

DE~2!~T,DCg!5DEcc~2!1DEoo~2!1DEoc~2!,

where

DEcc~2!5
1

2(IJ
]2E~0!~T!

]CI
g]CJ

g U
C~0!g

DCI
gDCJ

g5(
IJ

HIJDCI
gDCJ

g

5(
g8

E~0!g8Bg8
2 ~32!

DEco~2!5DEoc~2!5(
I

]DE~1!~T!

]CI
g U

C~0!g

DCI
g

5(
g8

S (
I

]DE~1!~T!

]CI
g U

C~0!g

CI
~0!g8D Bg8 . ~33!

The terms with the upper indexo arise only from
E(2)(T). There are additional terms in the self-consiste
field procedure due to changes in CI coefficients. Insert
]DE(1)(T)/]Tpe from Eq. ~21! gives us
]DEco~2!

]Tpe
5(

g8
S (

I

]2DE~1!~T!

]CI
g]Tpe

U
C~0!g

CI
~0!g8D Bg8

5(
g8

(
I

F(
a

Nt

ta
I $I ~pba!d~e,aa!1I ~aap!d~e,ba!%1 (

b51

NV

Vb
I $Rnb~pbb,cbdb!d~e,ab!

1Rnb~abp,cbdb!d~e,bb!1Rnb~abbb ,pdb!d~e,cb!1Rnb~abbb ,cbp!d~e,db!%GCI
~0!g8Bg8 . ~34!

If we define

hg8,pe
co

5hpe,g8
oc

5 (
I

NCSF F(
a

Nt

ta
I $I ~pba!d~e,aa!1I ~aap!d~e,ba!%1 (

b51

NV

Vb
I $Rnb~pbb,cbdb!d~e,ab!1Rnb~abp,cbdb!d~e,bb!

1Rnb~abbb ,pdb!d~e,cb!1Rnb~abbb ,cbp!d~e,db!%GCI
~0!g8 , ~35!

with
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ta
K5

]ta

]CK
g U

C~0!g

5 (
a851

Nt

ta8
IJ d~a,a8!$CJ

~0!gd~ I ,K !1CI
~0!gd~J,K !%,

~36!

Vb
K5

]Vb

]CK
g U

C~0!g

5 (
b851

NV

Vb8
IJ d~b,b8!$CJ

~0!gd~ I ,K !1CI
~0!gd~J,K !%,

~37!

then

]DEco~2!

]Tpe
5(

g8

Nc

hpe,g8
oc Bg8 . ~38!

The minimum ofE(2)(T,DCg) with respect toBg8 can be
obtained easily using Eqs.~31! and ~ 32!:

]DEc~1!

]Bg8

5gg8
c

52E~0!gdg8g , ~39!

]DEcc~2!

]Bg8

52E~0!g8Bg8 , ~40!

]DEcc~2!

]Bg8]Bg9

5hg8,g95
cc 2Eg8dg8g9 , ~41!

]DEco~2!

]Bg8

5(
q f

hg8,q f
oc Tq f . ~42!

Finally,

]E~2!~T,DCg!

]Bg8

52Eg8~dg8g1Bg8!1(
q f

hg8,q f
co Tq f.

~43!

The mixed terms are more complicated, because here
variations of spinors and CI coefficients mix. In order
have a quadratically convergent MC method we must
clude these terms.

If we addBg8 to our set of variational parameters,

g̃pe
o 1(

q f
h̃pe,q f

oo Tq f1(
g8

hpe,g8
oc Bg850 ~44!

and

gg8
c

1(
q f

hg8,q f
co Tq f1(

g9
hg8,g9

cc Bg950. ~45!
he

-

As with the spinor orthogonality constraints, the norm
ization condition(g8Ag8Ag851 of the CI vectors must be
incorporated:

W5E~2!~T,DCg!1(
e f

ve f~de f2Se f!

1lS 12(
g8

Ag8Ag8D . ~46!

The orthogonality constraints contribute to the CI gradie
and Hessian matrix in the following way:g̃g8

c
5gg8

c
22l and

h̃g8,g9
cc

5hg8,g9
cc

22ld(g8,g9). The off-diagonal mixed Hes-
sian matrix elementshnm,g8

oc andhg8,gj
co remain the same. Us

ing Eqs. ~44!–~46!, we obtain the second-order Newton
Raphson equation

S g̃pe
o

g̃g8
c D 1 (

q fg9
S h̃pe,q f

oo hpe,g9
oc

hg8,q f
co

h̃g8,g9
cc D S Tq f

Bg9
D 5S 0

0D . ~47!

The Hessian matrix possessesNk positive andNk nega-
tive eigenvalues corresponding to a minimum and a ma
mum, respectively, in the space of large and small com
nent parameters. Therefore, the energy functional
minimized with respect to spinor rotations between the
cupied electronic spinors and the positive-energy virt
spinors, and it is maximized with respect to spinor rotatio
between the occupied electronic spinors and the nega
energy spinors.

C. Relativistic multireference configuration interaction

In Sec. II B, we derived a Newton-Raphson equation
determine optimum MC DFC SCF wave functions based
the DC Hamiltonian. The effects of the frequenc
independent Breit interaction may be excluded or included
the multireference CI-SD step. These correspond to multi
erence CI-SD calculations based, respectively, on the no-
DC and DCB Hamiltonians. In the following, they will b
referred to as the DC multireference CI-SD and DCB mu
reference CI-SD schemes. In our DC and DCB multiref
ence CI-SD schemes, the eigenfunctions of the DC and D
Hamiltonians are constructed as linear combinations
CSF’s generated by single and double excitations out of
reference CSF’sF I(g IJp) involved in Eq.~6!,

CCI~gJp!5 (
I

NCSF S CI0
g F I~g iJp!1(

i

nI
S

CIi
gSF I ;e

r ~g iJp!

1(
i

nI
D

CIi
gDF I ;e f

rs ~g iJp!D , ~48!

wherenI
S (nI

D) is the total number of singly excited CSF
F I ;e

r ~doubly excitedF I ;e f
rs ) constructed by single~double!

excitations from the reference CSF’sF I . CIi
gS andCIi

gD are
CI-SD coefficients, which are determined variational
Since multiconfiguration self-consistent-field calculatio
provide only occupied and virtual spinors of the same sy
metries, virtual spinors of other symmetries are generated
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a Fock operator@21# with fractionally occupied multicon-
figuration self-consistent-field spinors.

In expansion~48!, some of the CSF’s coming from dif
ferent reference statesFA may be identical. For example,

FA;e f
rs 5FB;e

r for AÞB.

In such a case, the expansion coefficients may be factori
(CAiFA;e f

rs 1CB jFB;e
r ), and replaced by (CAi1CB j)FB;e

r

leading to summation in Eq.~48! only over nonredundan
CSF’s. If the reference MC DFC SCF wave function i
cludes the most important double excitations from the do
nant CSF’s, the multireference CI-SD wave function w
contain important triple and quadruple excitations.

D. Computational method

All G-spinor basis set expansion calculations were d
with a finite nucleus of uniform proton charge distributio
The atomic masses used for Be, Ne61, and Fe181 are, re-
spectively, 9.0, 20.0, and 55.847 amu. The large radial c
ponents of the Dirac spinors of symmetryk are expanded in
sets of Gaussian-type functions,

xk i
L 5Nk i

L r nkexp~2zk i r
2!, ~49!

with nk52k for k,0, andnk5k11 for k.0. Nk i
L is the

normalization constant. The small component basis set$xk i
S %

is constructed to satisfy the boundary conditions associ
with the finite nucleus@28# . The basis sets were compos
of even-tempered Gaussian-type functions. The basis se
ponents$zk i% in even-tempered Gaussian-type functions
given in terms of the parametersa andb by the geometric
series jk i5ab i 21; i 51,2, . . . ,Nk . The speed of light is
taken to be 137.035 989 5 a.u. throughout this study.

The Gaussian-type functions that satisfy the bound
conditions associated with the finite nucleus automatic
satisfy the so-called kinetic balance condition@29#. Basis sets
of G and S spinors (S for Slater! that satisfy the boundary
conditions have been shown to possess a minimum in
electronic energy surface in the basis set exponent s
@30#. Dyall and Faegri recently argued@31# that, using ki-
netic balance to define the small component basis se
terms of the large component set implies that there is o
one exponent parameter space for both components. Imp
tion of relativistic boundary conditions at the origin~kinetic
balance in more restricted terms! is an implicit projection
onto the positive-energy states in exponent space.
energy-minimum property and positive definiteness of
Hessian matrix in the exponent space of a kinetically b
anced basis was demonstrated earlier in single-configura
matrix DF SCF calculations@30#.

III. RESULTS AND DISCUSSION

Single-configuration DFC SCF and MC DFC SCF calc
lations, employing the no-pair DC Hamiltonian, were pe
formed on ground-state Be. In the MC DFC SCF calcu
tions, the 1s spinors are kept doubly occupied, and
remaining two electrons are distributed in then52 and 3
shells to generate various CSF’s. Table I contains the res
in increasing number of configurations (NCSF), up to NCSF
d,
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511. An even-tempered 25s20pG-spinor basis set was used
The parametersa andb for the even-tempered basis set a
respectively, 0.021 967 and 2.140. For comparison, the
sults of numerical finite-difference three-configuration M
DFC SCF calculations made withGRASP @2# are included.
The GRASP results were obtained in the point nucleus a
proximation. The results of our second-order thre
configuration MC DFC calculations are in excellent agre
ment with theGRASPresults. The discrepancies between t
two calculations are on the order of 10mhartree. In the de-
fault mode, theGRASPcalculations with a five-configuration
MC DFC failed to converge, although our second-order M
DFC calculations converged smoothly. Numerical finit
difference codes@1,2#, based on first-order variation, tend
experience convergence difficulties as the number of CS
increases, and also for heavy atoms in which there are m
occupied spinors to be treated self-consistently@32#.

For the five-, nine-, and 11-configuration MC DFC SC
calculations, the CI coefficients,C1s22s3s , C1s22p1/23p1/2

, and

C1s22p3/23p3/2
, are small but nonzero. The 2s and 3s spinors

are not uniquely determined because we have included
three CSF’’s that arise from the electronic configuratio
1s22s2, 1s22s3s, and 1s23s2 and the total MC DFC en-
ergy is invariant to unitary rotations between the 2s and 3s
spinors. The pairs of spinors (2p1/2, 3p1/2) and
(2p3/2, 3p3/2), are not uniquely defined for the same re
son. Thus, upon convergence of the Newton-Raphson it
tive process, the first-order density matrix was diagonaliz
to obtain natural spinors. In Table I, the CI coefficients in t
natural spinor representation are presented. The nonzer
coefficients in parentheses are those for nonunique spino
convergence. Our nine- and 11-configuration MC DFC S
wave functions account for, respectively,20.04533 and
20.04575 a.u., of DC correlation energy, both dynamic a
nondynamic.

Lindroth et al. @33# combined several experimental an
theoretical studies@35–40# to estimate nonrelativistic and
relativistic energies as well as higher-order QED effects
Be21 and Be0. Based on their study, the best ‘‘experime
tal’’ estimate of the DC correlation energy of Be is
20.09433 a.u.@33#. Thus our nine- and 11-configuratio
MC DFC SCF calculations recover roughly 50% of the ov
all DC correlation energy of the system. The remaining d
namic correlation energy may be accounted for by multir
erence CI-SD based on the MC DFC wave functions. The
coefficients displayed in Table I clearly indicate that mul
configuration treatment is needed to account for nondyna
correlation in Be. Three configurations contribute sign
cantly to the wave function.

The convergence pattern of our second-order thr
configuration MC DFC SCF energy for ground-state Be
demonstrated in Table II. In the table,uT1Bu represents the
norm of spinor and CI rotation parameters andDE the en-
ergy difference between successive Newton-Raphson it
tions. The spinor variation parametersT and the off-diagonal
elements of the unitary rotation matrix for CI coefficientsB
have been introduced, respectively, in Eqs.~16! and ~28!.
Nonscreened hydrogenic spinors were used as initial gues
Although the initial guesses are very poor, quadratic conv
gence with respect to spinor rotation and CI rotation para
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TABLE I. Computed MC DFC energiesEMCDFC (a.u.) and configuration mixing coefficientsC for
ground-state Be0 in increasing CSF expansion length. The values in square brackets represent fac
powers of 10. The CI coefficients in parentheses are for nonunique spinors at MC DFC convergence

NCSF 1 3 5 9 11
this work this work GRASP this work this work this work

EMCDFC 214.575 892a 214.619 547 214.619 563 214.621 145 214.621 223 214.621 644
C1s22s2 1.0 0.949 94 0.949 95 0.950 80 0.951 09 0.953 04

~0.950 73! ~0.950 99! ~0.952 99!

C1s22p
1/2
2 0.180 40 0.180 39 0.177 33 0.176 82 0.172 98

~0.177 33! ~0.176 80! ~0.172 93!

C1s22p
3/2
2 0.255 08 0.255 07 0.250 73 0.250 02 0.244 59

~0.250 73! ~0.250 15! ~0.244 57!

C1s22s3s 0.0 0.0 0.0
(20.011 52! (20.011 34! (20.011 32!

C1s23s2 20.040 84 20.040 28 20.040 22
(20.040 78! (20.040 20! (20.040 17!

C1s22p1/23p1/2
0.0 0.0

~6.6@25#! ~1.5@25#!

C1s23p
1/2
2 0.003 60 0.003 52

~0.003 54! ~0.003 45!

C1s22p3/23p3/2
0.0 0.0

~2.3@24#! ~9.5@25#!

C1s23p
3/2
2 0.005 11 0.004 98

~0.005 31! ~0.004 90!

C1s23d
3/2
2 20.011 08

(20.011 08!

C1s23d
5/2
2 20.013 57

(20.013 57!

aThe single-configuration DFB energy is214.575 189 a.u.

TABLE II. Convergence of the three-configuration MC DFC SCF energyEMCDFC (a.u.), and nine-
configuration complete active space DFC SCF energyECAS (a.u.), forJ50 ground state Be0. Nonscreened
hydrogenic spinors were used as initial guesses. The values in square brackets represent factors o
of 10.

Iteration uT1Bu DE EMCDFC uT1Bu DE ECAS

0 213.765 211 213.766 510
1 2.61@21# 24.05@21# 214.170 616 9.75@21# 26.63@21# 214.429 424
2 3.82@21# 23.16@21# 214.486 122 6.16@21# 21.88@21# 214.617 453
3 4.20@21# 21.32@21# 214.618 161 1.36@21# 22.25@23# 214.619 703
4 5.13@22# 21.38@23# 214.619 545 1.32@22# 21.40@25# 214.619 717
5 2.02@23# 22.15@26# 214.619 547 8.70@24# 26.45@28# 214.619 717
6 1.74@24# 22.54@29# 214.619 547
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eters becomes apparent in the values ofDE after the first few
Newton-Raphson iterations. In the table, the converge
pattern of the second-order complete active space DFC
energy ECAS is also demonstrated. The nine-configurati
complete active space DFC SCF wave function contains
the CSF’s generated by distributing the four electrons o
the spinor set$1s,2s,2p1/2,2p3/2%. Here again, we observ
quadratic convergence in the values ofDE after the first few
Newton-Raphson iterations, even though the initial gues
nonscreened hydrogenic spinors, are poor.

Single-configuration DFC SCF and MC DFC SCF calc
lations were also performed on the lowest odd-parityJ51
state of beryllium. To our knowledge, relativistic multico
figuration self-consistent-field calculations have never b
reported on the odd-parityJ51 state of beryllium, presum
ably owing to convergence difficulties in first-order mul
configurational self-consistent-field methods. In the M
DFC SCF calculations, 1s spinors are kept doubly occup
and the remaining two electrons are distributed in then52
and 3 shells to generate various CSF’s. Table III contains
results in increasing number of configurations up toNCSF
514. The lowest odd-parityJ51 state exhibits the near de
generacy characteristic of several strongly interacting c
figurations. For example, the configuration mixing coe

TABLE III. Computed MC DFC energiesEMCDFC (a.u.) and
configuration mixing coefficientsC for the lowest odd-parityJ
51 state of Be0 in increasing CSF expansion length. The values
square brackets represent factors of powers of 10.

NCSF51 NCSF52 NCSF58 NCSF514

EMCDFC 214.337 744214.514 307214.515 871214.521 093
C2s2p1/2

1.0 0.816 54 0.815 74 0.812 15

C2s2p3/2
20.577 29 20.576 73 20.573 48

C2s3p1/2
1.5@24# 23.7@24#

C2s3p3/2
5.2@25# 2.9@23#

C2p1/23s 25.6@25# 1.3@24#

C2p1/23d3/2
20.039 49

C2p3/23s 25.2@25# 27.0@26#

C2p3/23d3/2
20.070 52

C2p3/23d5/2
0.05 281

C3s3p1/2
20.036 05 20.034 68

C3s3p3/2
0.025 48 0.024 54

C3p1/23d3/2
20.007 15

C3p3/23d3/2
20.015 04

C3p3/23d5/2
0.011 22
e
F

ll
r

s,

-

n

d,

e

-

cients of the strongly interacting 2s2p1/2
3P1 and

2s2p3/2
1P1 CSF’s are, respectively, 0.812 15 an

20.573 48, for the expansion lengthNCSF514.
The convergence pattern of the second-order

configuration MC DFC SCF is demonstrated in Table I
Nonscreened hydrogenic spinors were used as initial gues
Although the initial guesses are very poor, quadratic conv
gence with respect to spinor rotation and CI rotati
parameters becomes apparent after the first few New
Raphson iterations. In iteration 0, a number of CSF
possess configuration mixing coefficients compara
in magnitude (C2s2p1/2

520.438 50,C2s2p3/2
50.310 06,

C2s3p1/2
50.465 66,C2s3p3/2

520.329 21, etc.! due to
the poor trial spinors. In the next iteration, however, the c
efficients of only the two strongly interacting CSF’
2s2p1/2

3P1 and 2s2p3/2
1P1 become dominant and nearl

convergent,C2s2p1/2
50.812 62 C2s2p3/2

520.574 98. Con-

vergence to the lowest odd-parityJ51 state is nearly as
rapid as to the groundJ50 state primarily because th
second-order energy variation, in which all active and c
electrons are simultaneously subjected to unitary mixing@Eq.
~13!#, induces quadratic convergence even when the grad
norm is large.

Table V displays the energy separation between
groundJ50 and excitedJ51 states computed by taking th
difference in MC DFC SCF energies. The energy inter
21 976 cm21 computed by 11-configurational MC DFC
SCF for the groundJ50 state and 14-configurational MC
DFC SCF for the odd-parityJ51 state agrees well with
experiment@34# (21 979 cm21), although the remaining dy
namical correlation is not recovered.

MC DF SCF effectively describes nondynamic correlati
due to near degeneracy, but fails to account for a large f
tion of dynamic correlation. To account for the remainin
dynamic correlation, DC and DCB multireference CI-S
calculations based on an 11-configuration MC DFC wa

TABLE IV. Convergence of the 14-configuration MC DFC SC
energyEMCDFC (a.u.) for the lowest odd-parityJ51 state of Be0.
Nonscreened hydrogenic spinors were used as initial guesses
values in square brackets represent factors of powers of 10.

NR iteration uT1Bu DE EMCDFC

0 214.393 733
1 5.58@21# 21.12@21# 214.505 729
2 1.13@0# 21.14@22# 214.517 135
3 5.57@21# 23.50@23# 214.520 639
4 1.15@21# 24.58@24# 214.521 091
5 1.52@22# 21.68@26# 214.521 093
6 2.52@23# 24.44@28# 214.521 093

TABLE V. MC DFC energy separationDE ~in cm21) between
the groundJ50 and odd-parityJ51 states of Be0 in increasing
CSF expansion length.

NCSF
J502NCSF

J51 1-1 3-2 9-8 11-14 Experimenta

DE 52 267 17 651 23 122 21 976 21 979

aReference@34#.
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TABLE VI. DC multireference CI energiesECI
DC , and DCB multireference CI energiesECI

DCB ~a.u.!, based
on an eleven-configuration MC DFC wave function andl -limit DC and DCB correlation energiesEcorr

DC( l ) and
Ecorr

DCB( l ) for ground-state Be0.

f limit g limit h limit extrapolatedl→`a

ECI
DC 214.669 402 214.669 763 214.669 921 214.670 127

Ecorr
DC( l ) 20.093 510 20.093 871 20.094 029 20.094 237

ECI
DCB 214.668 884 214.669 254 214.669 411 214.669 623

Ecorr
DCB( l ) 20.093 695 20.094 065 20.094 222 20.094 434

aExtrapolation was carried out using the formulaDE( l )5E( l )2E( l 21)5A( l 11/2)2B.
in
d
s.

lud

ec-
ge

y
the
function were performed on ground-state Be in increas
order of partial-wave expansion. The results are displaye
Table VI. All electrons were included in the calculation
The total DC (ECI

DC) and DCB (ECI
DCB) energies of the ground

state were calculated, respectively, by excluding and inc
g
in

-

ing the frequency-independent Breit interaction in the eff
tive electron-electron interaction. A moderately lar
G-spinor basis set of 25s20p17d16f 14g14h functions was
used. The total DC energy,214.669 921 a.u., obtained b
relativistic multireference CI-SD calculations based on
s of 10.

TABLE VII. MC DFC energiesEMCDFC (a.u.) and configuration mixing coefficientsC for ground-state

Ne61 in increasing CSF expansion length. The values in square brackets represent factors of power
The CI coefficients in parentheses are for nonunique spinors at MC DFC energy convergence.

NSCF 1 3 5 9 11
this work this work GRASP this work this work this work

EMCDFC 2110.255 974a 2110.377 1962110.378 1452110.378 6712110.378 6142110.380 100
C1s22s2 1.0 0.967 59 0.967 71 0.967 80 0.967 86 0.968 56

~0.967 80! ~0.967 86! ~0.968 56!

C1s22p
1/2
2 0.146 83 0.146 54 0.146 25 0.146 11 0.144 44

~0.146 25! ~0.146 11! ~0.144 44!

C1s22p
3/2
2 0.205 47 0.205 10 0.204 65 0.204 47 0.202 12

~0.204 65! ~0.204 47! ~0.202 12!

C1s22s3s 0.0 0.0 0.0
~4.1@24#! ~4.1@25#! ~4.1@25#!

C1s23s2 20.009 62 20.009 57 20.009 56
(20.009 62! (20.009 57! (20.009 56!

C1s22p1/23p1/2
0.0 0.0

~1.2@25#! ~1.3@25#!

C1s23p
1/2
2 0.001 24 0.001 22

~0.001 24! ~0.001 22!

C1s22p3/23p3/2
0.0 0.0

~1.5@25#! ~1.7@25#!

C1s23p
3/2
2 0.001 75 0.001 73

~0.001 75! ~0.001 73!

C1s23d
3/2
2 20.005 97

(20.005 97!

C1s23d
5/2
2 20.007 34

(20.007 34!

aThe single-configuration DFB energy is2110.242 103 a.u.
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TABLE VIII. DC multireference CI energiesECI
DC and DCB multireference CI energiesECI

DCB ~a.u.!, based
on a five-configuration MC DFC wave function andl -limit DC and DCB correlation energiesEcorr

DC( l ) and
Ecorr

DCB( l ) for ground-state Ne61.

f limit g limit h limit extrapolated (l→`) a

ECI
DC 2110.433 605 2110.434 187 2110.434 443 2110.434 789

Ecorr
DC( l ) 20.177 631 20.178 213 20.178 469 20.178 814

ECI
DCB 2110.421 239 2110.421 862 2110.422 143 2110.422 540

Ecorr
DCB( l ) 20.179 136 20.179 759 20.180 040 20.180 437

aExtrapolation was carried out using the formulaDE( l )5E( l )2E( l 21)5A( l 11/2)2B.
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11-configuration MC DFC SCF wave function in a partia
wave expansion ofl max55, yields a DC correlation energy o
20.094 03 a.u. The computed DC correlation energy t
accounts for 99.7% of the ‘‘experimental’’ estimate
20.094 31 a.u.. The total energies computed in increas
order of partial-wave expansion, up tol max55 (h spinors!,
have been extrapolated tol max→`. The extrapolated DC
correlation energy20.094 24 a.u. accounts for 99.93%
the estimated DC correlation energy. The total extrapola
DC energy is214.670 127 a.u., whereas the ‘‘experime
tal’’ estimate of the relativistic DC and nonrelativistic ene
gies of Be are, respectively,214.670 20 and214.667 35
a.u.@33#. The total DCB energy214.669 623 a.u. obtaine
by extrapolating tol max→` yields a correction due to th
Breit interaction of10.000 504 a.u., in good agreement wi
10.000 490 a.u. estimated by Lindroth et al.@33#.

Table VII contains the results of single-configuration a
MC DFC SCF calculations on berylliumlike neon (Ne61)
with as many as 11 configurations (NCSF511). An even-
tempered basis set of 26s22p G spinors was used. The pa
rameters a and b for the even-tempered basis set a
0.592 446 and 1.955 56, respectively. Comparison of the
and Ne61 results shows that the CI coefficients for the dom
nant 1s22s2 CSF (C1s22s2) in Ne61 is slightly larger than
that in Be in every instance. The difference arises from
fact that the 2p3/2 spinor energy in Ne61 is farther from the
2s1/2 energy than in Be, an increase which is due to
s

g

d

e
-

e

e

larger nuclear attraction in berylliumlike neon. However,
the nuclear charge Z increases further in the beryllium i
electronic sequence, the 2s1/2 and 2p1/2 states become as
ymptotically degenerate@22#. The degeneracy is thus relativ
istic in origin. At least a two-configuration MC DFC SC
treatment (1s1/2

2 2s1/2
2 and 1s1/2

2 2p1/2
2 CSF’s!, is necessary in

the Be isoelectronic sequence because of this asymptotic
generacy.

Table VIII displays the results of DC and DCB multire
erence CI-SD calculations on Ne61 in increasing order of
partial-wave expansion. A moderately largeG-spinor basis
set of 26s22p18d16f 14g14h functions was used. The tota
DC energyEDCCI52110.434 443 a.u. obtained by multire
erence CI-SD based on a five-configuration MC DFC S
wave function in a partial-wave expansion ofl max55, yields
a DC correlation energy ofEcorr

DC 520.178 47 a.u. The tota
energies computed in increasing order of partial-wave exp
sion, up tol max55, are extrapolated tol max→`. Although
no experimental estimate is available for the berylliumli
ion, we believe that the extrapolated DC correlation ene
20.178 82 a.u. accounts for at least 99.9% of the ove
DC correlation energy of Ne61 based on the accuracy ob
tained with neutral beryllium. The total DC energy obtain
by extrapolation is2110.434 789 a.u. The difference be
tween the extrapolated total DC and DCB energi
0.012 249 a.u., represents the relativistic many-body s
TABLE IX. Computed total MC DFC and MC DFB energies~a.u.! for the lowestJ50, 1, and 2 states of Fe181 in increasing CSF
expansion length.

2s22p1/2
2 2p3/2

2 12s22p1/22p3/2
3 12s22p3/2

4 12p1/2
2 2p3/2

4 (13s) (13s3p1/2) (13s3p1/23p3/2)

J52
NCSF 1 2 11 45 232
DFC 21052.185 501 21052.252 739 21052.259 307 21052.267 952 21052.284 373
DFB 21051.797 145 21051.866 694 21051.873 403 21051.882 125 21051.898 743

J50
NCSF 1 2 3 10 29 109
DFC 21051.562 777 21051.886 361 21051.917 272 21051.923 587 21051.934 197 21051.948 194
DFB 21051.163 890 21051.498 691 21051.528 368 21051.534 810 21051.545 390 21051.559 561

J51
NCSF 1 9 43 208
DFC 21051.841 571 21051.848 576 21051.852 567 21051.873 536
DFB 21051.461 367 21051.468 438 21051.472 482 21051.493 674
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TABLE X. The DC correlation energyEcorr
DC and DCB correlation energyEcorr

DCB ~a.u.!, for Fe181 in
increasing CSF expansion length.

12s22p1/22p3/2
3 12s22p3/2

4 12p1/2
2 2p3/2

4 (13s) (13s3p1/2) (13s3p1/23p3/2)

J52
DC 20.067 238 20.067 238 20.067 238 20.073 806 20.082 451 20.098 872
DCB 20.069 549 20.069 549 20.069 549 20.076 258 20.084 950 20.101 598

J50
DC 20.323 584 20.354 495 20.360 810 20.371 420 20.385 417
DCB 20.334 801 20.364 478 20.370 920 20.381 500 20.395 671

J51
DC 20.007 005 20.010 996 20.031 962
DCB 20.007 071 20.011 115 20.032 307
ac
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due to inclusion of the frequency-independent Breit inter
tion in the effective electron-electron interaction. The lev
shift in berylliumlike Ne61 due to the Breit interaction is
over 20 times larger in magnitude than that in neutral Be.
highly ionized systems, the Breit interaction significan
modifies the relativistic many-body effects.

As with berylliumlike ions, oxygenlike ions exhibit th
near degeneracy characteristic of a manifold of strongly
teracting configurations. Table IX displays the computed M
DFC SCF energies (EMCDFC) of the lowestJ50 (3P0), J
51 (3P1), and J52 (3P2) even-parity states of oxygen
like iron Fe181 in an increasing number of configurations.
each entry in the table, the number of CSF’s (NCSF) that
arises from the electronic configurations displayed on the
row is given. MC Dirac-Fock-Breit~DFB! SCF calculations
including the Breit interaction in the configuration-mixin
step of the MC SCF algorithm have also been performed
study the effect of the Breit interaction on fine-structure te
energies. The computed MC DFB SCF energies (EMCDFB)
for the J50, 1, and 2 states are also displayed in the ta
An even-tempered basis set of 24s20pG spinors was used
The parametersa andb for the even-tempered basis set a
0.035 944 and 2.205 10, respectively. In the MC DF S
calculations, the 1s spinor was kept doubly occupie
throughout and the remaining six electrons were treated
active electrons to generate various CSF’s.

Within the n52 complex, each of the electronic config
rations 2s22p1/2

2 2p3/2
2 and 2s22p1/2

1 2p3/2
3 gives rise to aJ

52, even-parity CSF, and these interact strongly. Tw
configuration MC DFC SCF calculations for the twoJ52
-
l

r

-

p

to

e.

F

as

-

CSF’s yield configuration mixing coefficients of 0.9565 an
0.2917. Then52 complex gives rise to only one CSF for th
J51, even-parity state, which arises from the electronic c
figuration 2s22p1/2

1 2p3/2
3 . Thus theJ51 state has no nea

degeneracy. On the other hand, each of the electronic
figurations 2s22p1/2

2 2p3/2
2 , 2s22p3/2

4 , and 2p1/2
2 2p3/2

4 gives
rise to a J50 state, and they interact strongly. Thre
configuration MC DFC SCF calculations for the threeJ
50 CSF’s in then52 complex yield the configuration mix
ing coefficients 0.8865,20.4604, and 0.0603, showing ne
degeneracy with especially strong interaction between
two CSF’s arising from 2s22p1/2

2 2p3/2
2 and 2s22p3/2

4 .
The MC DFC and DFB SCF calculations displayed in t

last three columns of Table IX include CSF’s arising fro
the n53 complex. The largest MC DFC and DFB SCF ca
culations include 232, 109, and 208 CSF’s, respectively,
J52, 0, and 1 even-parity states. Table X displays DC a
DCB correlation energies for theJ52, 0, and 1 states com
puted in increasing CSF expansion lengths. The DC~or
DCB! correlation energies were computed by subtracting
single-configuration DFC~or DFB! SCF energies from the
MC DFC ~or DFB! SCF energies. Because of near dege
eracy and strong configuration mixing of CSF’s, theJ50
state yields the largest correlation energy in each MC exp
sion. At NCSF53 ~within the n52 complex!, theJ50 state
yields a DC correlation energy of20.354 495 a.u., the bulk
of which is nondynamic correlation energy. Table XI di
plays the MC DFC and DFB SCF energies ofJ50 and 1
states relative to the groundJ52 state, i.e., the fine-structur
9
2

TABLE XI. MC DFC and MC DFB energies~a.u.! of J50 and 1 states relative to theJ52 ground state
for Fe181 in increasing CSF expansion length.

2s22p1/2
2 2p3/2

2 12s22p1/22p3/2
3 12s22p3/2

4 12p1/2
2 2p3/2

4 (13s) (13s3p1/2) (13s3p1/23p3/2)

J50
DC 0.622 724 0.689 962 0.366 378 0.335 467 0.335 720 0.333 755 0.336 17
DCB 0.633 255 0.702 804 0.368 003 0.338 326 0.338 593 0.336 735 0.339 18

J51
DC 0.411 168 0.410 731 0.415 385 0.410 837
DCB 0.405 327 0.404 965 0.409 643 0.405 069
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TABLE XII. l -limit and extrapolated (l max→`) DC and DCB multireference CI energies~a.u.!, for theJ52, 0, and 1 states of Fe181

based, respectively, on two-, three-, and one-reference configuration MC DFC wave functions.

J52 J50 J51
DC DCB DC DCB DC DCB

d-limit a 21052.422 699 21052.038 799 21052.082 711 21051.696 386 21052.010 543 21051.632 509
f limit b 21052.450 525 21052.067 057 21052.110 280 21051.724 465 21052.038 054 21051.660 463
g limit c 21052.458 548 21052.075 206 21052.118 564 21051.732 959 21052.046 013 21051.668 633
h limit d 21052.461 445 21052.078 295 21052.121 597 21051.736 107 21052.048 922 21051.671 624
l max→` e 21052.466 466 21052.083 507 21052.126 760 21051.741 411 21052.053 943 21051.676 763

aBasis set 24s20p16d.
bBasis set 24s20p16d14f .
cBasis set 24s20p16d14f 14g.
dBasis set 24s20p16d14f 14g14h.
eExtrapolation was carried out using the formulaDE( l )5E( l )2E( l 21)5A( l 11/2)2B.
Th
en
la

s
ne
an

ee
pli

o
om
a-

n

c

nd
fo
e
s,
SD
t f

s
ns

.
d

III

e
r-
and
lti-

ny-
ct-

h-
by

ent
ri-
ave

-
te-
tic

u-

in-

is-
eing

t-

n
ry
I,
in

of
term energies, in increasing CSF expansion lengths.
bulk of the experimentally determined fine-structure term
ergies are reproduced by the MC DFC or DFB SCF calcu
tions within then52 complex:J50 and 1 state energie
computed by the three-configuration MC DFB SCF and o
configuration DFB SCF calculations are 0.338 326 a.u.
0.405 327 a.u., respectively, above the groundJ52 state,
while experimental values are 0.3426860.00047 and
0.4075260.00002 a.u., respectively. However, the agr
ment of the computed and experimental fine-structure s
tings betweenJ51 and 2 states deteriorates when the size
MC DF SCF is increased by adding CSF’s generated fr
then53 complex. Partially accounting for dynamic correl
tion by including then53 complex in multiconfiguration
self-consistent-field calculations simply causes an imbala
in the recovery of dynamic correlation for eachJ state. More
accurate treatment of dynamic correlation is necessary to
culate the fine-structure separations accurately.

To account accurately for dynamic correlation, DC a
DCB multireference CI-SD calculations were performed
all three fine-structure states in increasing partial-wave
pansion up tol max55. ForJ52, 0, and 1 even-parity state
the numbers of reference CSF’s for multireference CI-
calculations were 2, 3, and 1, respectively; these accoun
all the CSF’s arising from the n52 complex. The 1s1/2 elec-
trons were excluded~frozen!, and the remaining six electron
were correlated in the multireference CI-SD calculatio
The results are displayed in Table XII. Thel -limit ( l<5)
results were extrapolated tol max→` using the formula
DE( l )5A( l 11/2)2B, whereA andB are fitting parameters
The extrapolated energies for the three states were use
calculate the term energies of theJ50 and 1 states relative
to theJ52 state. The results are summarized in Table X
e
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-
d

-
t-
f

ce

al-

r
x-

or

.

to

.

The DCB multireference CI-SD calculations, which includ
the Breit interaction in the effective electron-electron inte
action, result in close agreement between the calculated
experimental term energy separations, while the DC mu
reference CI-SD calculation does not. The relativistic ma
body shift due to the Breit interaction is essential in predi
ing the fine-structure separations.

Table XIV summarizes the fine-structure splittings~in
cm21) relative to the groundJ52 (3P2) state computed
with our MC DF SCF and DCB multireference CI-SD met
ods. The table also contains the term splittings obtained
previous relativistic correlated methods and by experim
for comparison. Critical compilations of the available expe
mental data along the oxygen isoelectronic sequence h
been carried out by Edle´n @41,42# . The most extensive cor
related calculations on oxygenlike iron were done by fini
difference multiconfiguration Hartree-Fock and relativis
MC DF SCF. Froese Fischer and Saha@43# applied the non-
relativistic multiconfiguration Hartree-Fock method to calc
late correlation corrections for then52 complex, as well as
the n53 and 4 complexes. Relativistic corrections were
cluded via the Breit-Pauli approximation. The3P2- 3P0
splitting they obtained agrees well with experiment, the d
crepancy between the computed value and experiment b
' 200 cm21. Cheng, Kim, and Desclaux@44# performed
MC DF calculations with the CSF’s generated within then
52 complex. The remaining correlation correction from ou
side then52 complex was estimated@45# using an expan-
sion of the nonrelativistic limit of the MC DF energy i
powers of Z and the hydrogenic perturbation theo
Z-expansion. As with our MC DFB SCF results in Table X
the bulk of the fine-structure splittings are reproduced
their MC DF calculations by employing a small number
B
TABLE XIII. Fine-structure term energies~a.u.! relative to theJ52 ground state of Fe181 computed by DC multireference CI and DC
multireference CI in increasing partial-wave expansion.

f limit g limit h limit Extrapolated
DC DCB DC DCB DC DCB DC DCB Experimenta

J50 0.340 25 0.342 59 0.339 98 0.342 25 0.339 85 0.342 19 0.339 70 0.342 09 0.342 68~47!

J51 0.412 47 0.406 59 0.412 54 0.406 57 0.412 52 0.406 67 0.412 53 0.406 74 0.407 52~2!

aReference@42#. The values in parentheses are experimental errors.
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TABLE XIV. Comparison of the fine-structure term splittings (cm21) in Fe181.

Method 3P2-3P0
3P2-3P1

MC DFB SCFa ~this work! 74 442 88 902
MCDF (n52)b 74 232 88 950
MC Hartree-Fock (n52)c 73 827 87 476
MC Hartree-Fock (n52,3,4)d 75 428 90 486

MCDF1HPTe 76 106 89 033
DC multireference CIf ~this work! 75 080 89 269
DC multireference CI1L.S.g ~this work! 75 087 89 484

Experimenth 75 209~104! 89 440~4!

aValues taken from Table XI.
bReference@44#, n52 complex MCDF calculations.
cFroese Fischer and Saha@43#, n52 complex multiconfiguration Hartree-Fock calculations.
dFroese Fischer and Saha@43#, n52, 3, and 4 complex multiconfiguration Hartree-Fock calculations.
eReference@45#, MCDF calculations with second-order hydrogenic many-body perturbation theory co
tions.

fExtrapolated values taken from Table XIII.
gLamb shift ~L.S.! estimated byGRASP @2# is added to the DC multireference CI value.
hReferences@41,42#. The values in parentheses are experimental errors.
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CSFs generated within then52 complex. Our3P2-3P0 and
3P2-3P1 DCB multireference CI splittings are 130 an
170 cm21 shy of experimental values, respectively. To a
count for higher-order QED effects, the Lamb shift for ea
fine-structure level was estimated inGRASP @2# calculations.
When the Lamb shift for each fine-structure level is a
counted for, the discrepancies between the computed
experimental values are further reduced, respectively
'120 and 40 cm21.

IV. CONCLUSIONS

Here we have reported on the successful implementa
and application of a second-order relativistic multiconfigu
tion Dirac-Fock self-consistent-field method for relativis
quantum mechanical calculations on many-electron syste
A quadratically convergent Newton-Raphson algorithm
multiconfiguration Dirac-Fock self-consistent-field calcu
tions has been successfully developed and implemented
al

hy

ys

, S

J.
-

-
nd
to

n
-

s.
r

ith

analytic basis sets ofG spinors. Relativistic multiconfigura
tion Dirac-Fock self-consistent-field calculations, followe
by multireference configuration-interaction calculatio
based on multiconfiguration self-consistent-field wave fu
tions, have been applied to beryllium, berylliumlike neo
and oxygenlike iron, species which exhibit the near deg
eracy characteristic of a manifold of strongly interacting co
figurations. The present formalism treats the electrons r
tivistically, and treats the effects of relativity and electro
correlation~both dynamic and nondynamic! variationally.
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